Global weak solution of planetary geostrophic equations with inviscid geostrophic balance

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Weak Solution of Planetary Geostrophic Equations with Inviscid Geostrophic Balance

A reformulation of the planetary geostrophic equations (PGEs) with inviscid balance equation is proposed and the existence of global weak solutions is established, provided that the mechanical forcing satisfies an integral constraint. There is only one prognostic equation for the temperature field and the velocity field is statically determined by the planetary geostrophic balance combined with...

متن کامل

Quasi-geostrophic Type Equations with Weak Initial Data

We study the initial value problem for the quasi-geostrophic type equations ∂θ ∂t + u · ∇θ + (−∆)θ = 0, on R × (0,∞), θ(x, 0) = θ0(x), x ∈ R n , where λ(0 ≤ λ ≤ 1) is a fixed parameter and u = (uj) is divergence free and determined from θ through the Riesz transform uj = ±Rπ(j)θ, with π(j) a permutation of 1, 2, · · · , n. The initial data θ0 is taken in the Sobolev space L̇r,p with negative ind...

متن کامل

Lattice Boltzmann solutions of the three-dimensional planetary geostrophic equations

We use the lattice Boltzmann method as the basis for a three-dimensional, numerical ocean circulationmodel in a rectangularbasin. The fundamental dynamical variables are the populationsof massand buoyancy-particleswith prescribed discrete velocities. The particles obey collision rules that correspond,on the macroscopic scale, to planetary geostrophicdynamics.The advantagesof the model are simpl...

متن کامل

Dissipative quasi - geostrophic equations with initial data

In this paper, we study the solutions of the initial-value problem (IVP) for the quasi-geostrophic equations, namely ∂tθ + u.∇θ + κ (−∆) θ = 0, on R × ]0,+∞[ , θ (x, 0) = θ0(x), x ∈ R. Our goal is to establish the existence and uniqueness of regulars solutions for the two-dimentional dissipative quasi-geostrophic equation with initial data in a Sobolev space H satisfying suitable conditions wit...

متن کامل

An Inviscid Regularization for the Surface Quasi-Geostrophic Equation

Inspired by recent developments in Berdina-like models for turbulence, we propose an inviscid regularization for the surface quasi-geostrophic (SQG) equations. We are particularly interested in the celebrated question of blowup in finite time of the solution gradient of the SQG equations. The new regularization yields a necessary and sufficient condition, satisfied by the regularized solution, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2006

ISSN: 0003-6811,1563-504X

DOI: 10.1080/00036810500328299